Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(12): 6315-6326, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470442

RESUMEN

Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.


Asunto(s)
Herbicidas , Hypocreales , Peptaiboles/química , Peptaiboles/farmacología , Herbicidas/farmacología , Aminoácidos/metabolismo , Espectrometría de Masas , Hypocreales/metabolismo
2.
Plant J ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470090

RESUMEN

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.

3.
J Am Chem Soc ; 146(9): 6189-6198, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386630

RESUMEN

Polyketides with the isochroman-3-one pharmacophore are rare among fungal natural products as their biosynthesis requires an unorthodox S-type aromatic ring cyclization. Genome mining uncovered a conserved gene cluster in select leotiomycetous fungi that encodes the biosynthesis of cytosporones, including isochroman-3-one congeners. Combinatorial biosynthesis in total biosynthetic and biocatalytic formats in Saccharomyces cerevisiae and in vitro reconstitution of key reactions with purified enzymes revealed how cytosporone structural and bioactivity diversity is generated. The S-type acyl dihydroxyphenylacetic acid (ADA) core of cytosporones is assembled by a collaborating polyketide synthase pair. Thioesterase domain-catalyzed transesterification releases ADA esters, some of which are known Nur77 modulators. Alternatively, hydrolytic release allows C6 hydroxylation by a flavin-dependent monooxygenase, yielding a trihydroxybenzene moiety. Reduction of the C9 carbonyl by a short chain dehydrogenase/reductase initiates isochroman-3-one formation, affording cytosporones with cytotoxic and antimicrobial activity. Enoyl di- or trihydroxyphenylacetic acids are generated as shunt products, while isocroman-3,4-diones are formed by autoxidation. The cytosporone pathway offers novel polyketide biosynthetic enzymes for combinatorial synthetic biology to advance the production of "unnatural" natural products for drug discovery.


Asunto(s)
Productos Biológicos , Policétidos , Hongos/genética , Saccharomyces cerevisiae/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/química , Productos Biológicos/metabolismo
4.
J Nat Prod ; 86(12): 2621-2629, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37984868

RESUMEN

Six new squalene derived polyether glycosides, onygenaleosides A-F (1-6), that possess a 6/5 bicyclic fused ring skeleton were isolated from the cultures of Onygenales sp. YX1425, along with two known analogues (7 and 8). The planar structures of the new compounds were elucidated based on analysis of NMR and MS spectroscopy data, and the absolute configuration of 1 was determined by the advanced Mosher method and quantum chemical calculations. Compound 2 was active against Spodoptera frugiperda with an LC50 value of 193.4 ± 1.1 µg/mL.


Asunto(s)
Insecticidas , Triterpenos , Glicósidos/farmacología , Glicósidos/química , Triterpenos/farmacología , Triterpenos/química , Insecticidas/farmacología , Espectroscopía de Resonancia Magnética/métodos , Esqueleto , Estructura Molecular
5.
Metab Eng ; 80: 207-215, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852432

RESUMEN

Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 µg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Flavonoides/genética , Glucosa/metabolismo
6.
Nat Commun ; 14(1): 4267, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460548

RESUMEN

Synthetic biology requires efficient systems that support the well-coordinated co-expression of multiple genes. Here, we discover a 9-bp nucleotide sequence that enables efficient polycistronic gene expression in yeasts and filamentous fungi. Coupling polycistronic expression to multiplexed, markerless, CRISPR/Cas9-based genome editing, we develop a strategy termed HACKing (Highly efficient and Accessible system by CracKing genes into the genome) for the assembly of multigene pathways. HACKing allows the expression level of each enzyme to be precalibrated by linking their translation to those of host proteins with predetermined abundances under the desired fermentation conditions. We validate HACKing by rapidly constructing highly efficient Saccharomyces cerevisiae cell factories that express 13 biosynthetic genes, and produce model endogenous (1,090.41 ± 80.92 mg L-1 squalene) or heterologous (1.04 ± 0.02 mg L-1 mogrol) terpenoid products. Thus, HACKing addresses the need of synthetic biology for predictability, simplicity, scalability, and speed upon fungal pathway engineering for valuable metabolites.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Saccharomyces cerevisiae/genética , Hongos/genética
7.
J Nat Prod ; 86(5): 1240-1250, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37145877

RESUMEN

Mass spectrometry-based dereplication and prioritization led to the discovery of four multi-N-methylated cyclodecapeptides, auyuittuqamides E-H (1-4), from a soil-derived Sesquicillium sp. The planar structures of these compounds were elucidated based on analysis of HRESIMS and NMR data. Absolute configurations of the chiral amino acid residues were assigned by a combination of the advanced Marfey's method, chiral-phase LC-MS analysis, and J-based configuration analysis, revealing that 1-4 contain both d- and l-isomers of N-methylleucine (MeLeu). Differentiation of d- and l-MeLeu in the sequence was achieved by advanced Marfey's analysis of the diagnostic peptide fragments generated from partial hydrolysis of 1. Bioinformatic analysis identified a putative biosynthetic gene cluster (auy) for auyuittuqamides E-H, and a plausible biosynthetic pathway was proposed. These newly identified fungal cyclodecapeptides (1-4) displayed in vitro growth inhibitory activity against vancomycin-resistant Enterococcus faecium with MIC values of 8 µg/mL.


Asunto(s)
Aminoácidos , Fragmentos de Péptidos , Aminoácidos/química , Cromatografía Liquida , Espectrometría de Masas , Estructura Molecular , Péptidos Cíclicos/análisis , Péptidos Cíclicos/química
8.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37073087

RESUMEN

Isocitrate lyase (ICL), as the key enzyme in the glyoxylate metabolic pathway, plays an important role in metabolic adaptation to environmental changes. In this study, metagenomic DNA from the soil and water microorganism collected from the Dongzhai Harbor Mangroves (DHM) reserve, in Haikou City, China, was high-throughput sequenced using an Illumina HiSeq 4000 platform. The icl121 gene, encoding an ICL with the highly conserved catalytic pattern IENQVSDEKQCGHQD was identified. Then, this gene was subcloned into the pET-30a vector and overexpressed in Escherichia coli BL21 (DE3) cells. The maximum enzymatic activity of the recombinant ICL121 protein is 9.47 × 102 U/mg occurring at pH 7.5 and 37°C. Furthermore, as a metalo-enzyme, ICL121 can utilize the appropriate concentrations of Mg2+, Mn2+, and Na+ ion as cofactors to exhibit high enzymatic activity. In particular, the novel metagenomic-derived icl121 gene displayed distinct salt tolerance (NaCl) and might be useful for generating salt-tolerant crops in the future.


Asunto(s)
Isocitratoliasa , Humedales , Isocitratoliasa/química , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Escherichia coli/genética , Secuencia de Bases , Proteínas Recombinantes/genética
9.
Nat Prod Rep ; 40(1): 62-88, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35796260

RESUMEN

Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.


Asunto(s)
Proteínas Fúngicas , Policétidos , Proteínas Fúngicas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Péptidos/química , Péptido Sintasas/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos
10.
Proc Natl Acad Sci U S A ; 119(32): e2123379119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914151

RESUMEN

Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.


Asunto(s)
Depsipéptidos , Proteínas Fúngicas , Hongos , Aminoácidos/química , Metabolismo de los Hidratos de Carbono , Quimiometría , Depsipéptidos/química , Depsipéptidos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/genética , Hongos/metabolismo , Familia de Multigenes , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas/química , Azúcares
11.
J Antibiot (Tokyo) ; 75(5): 247-257, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35288678

RESUMEN

Three new lipopeptaibols, halovirs I-K (1-3), were isolated from the solid culture of the phytopathogenic fungus Paramyrothecium roridum NRRL 2183. Their planar structures, which consist of a hexapeptide backbone and acyl substitutions at the N- and C-termini, were elucidated by comprehensive analysis of the 1D and 2D NMR spectroscopic data along with the detailed interpretation of the MS/MS fragmentation pattern. Absolute configurations of the amino acid/1,2-amino alcohol residues were determined using the advanced Marfey's method. Bioinformatics analysis of the genome assembly of P. roridum NRRL 2183 revealed a gene cluster that is likely responsible for the biosynthesis of halovirs I-K. Analysis of the module and domain organization of the putative halovir synthetase PrHalA indicated that the assembly of 1-3 proceeds in an unconventional nonlinear fashion. 1 and 2 exhibited potent antibacterial activity against both antibiotic-sensitive and multidrug-resistant Gram-positive pathogens. These lipopeptaibols also displayed significant cytotoxicity toward human lung carcinoma A549, human breast carcinoma MCF-7, and human cervical carcinoma HeLa cells with IC50 values ranging from 1.3 to 3.3 µM.


Asunto(s)
Antineoplásicos , Carcinoma , Hypocreales , Antibacterianos/farmacología , Antineoplásicos/química , Células HeLa , Humanos , Hypocreales/química , Estructura Molecular , Espectrometría de Masas en Tándem
12.
BMC Genomics ; 23(1): 37, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996356

RESUMEN

BACKGROUND: Advances in DNA sequencing technologies have transformed our capacity to perform life science research, decipher the dynamics of complex soil microbial communities and exploit them for plant disease management. However, soil is a complex conglomerate, which makes functional metagenomics studies very challenging. RESULTS: Metagenomes were assembled by long-read (PacBio, PB), short-read (Illumina, IL), and mixture of PB and IL (PI) sequencing of soil DNA samples were compared. Ortholog analyses and functional annotation revealed that the PI approach significantly increased the contig length of the metagenomic sequences compared to IL and enlarged the gene pool compared to PB. The PI approach also offered comparable or higher species abundance than either PB or IL alone, and showed significant advantages for studying natural product biosynthetic genes in the soil microbiomes. CONCLUSION: Our results provide an effective strategy for combining long and short-read DNA sequencing data to explore and distill the maximum information out of soil metagenomics.


Asunto(s)
Metagenoma , Suelo , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Análisis de Secuencia de ADN
13.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 1845-1857, 2021 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-34227280

RESUMEN

Non-ribosomal peptide synthetases catalyze the biosynthesis of structurally and functionally diverse non-ribosomal peptide natural products, which have broad applications in pharmaceutical, agricultural, and industrial sectors. Engineered non-ribosomal peptide synthetases can be used to produce novel non-ribosomal peptides through combinatorial biosynthesis. This conforms to the concept of green chemistry, thus attracts increasing attention across the world. Herein, three different engineering strategies were summarized, and recent advances in this field were reviewed.


Asunto(s)
Productos Biológicos , Péptido Sintasas , Ingeniería de Proteínas , Péptido Sintasas/genética , Péptidos
14.
mSphere ; 5(6)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239367

RESUMEN

Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.


Asunto(s)
Fusarium/genética , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Células Vero
15.
J Am Chem Soc ; 142(40): 17093-17104, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32833442

RESUMEN

Combinatorial biosynthesis with fungal polyketide synthases (PKSs) promises to produce unprecedented bioactive "unnatural" natural products (uNPs) for drug discovery. Genome mining of the dothideomycete Rhytidhysteron rufulum uncovered a collaborating highly reducing PKS (hrPKS)-nonreducing PKS (nrPKS) pair. These enzymes produce trace amounts of rare S-type benzenediol macrolactone congeners with a phenylacetate core in a heterologous host. However, subunit shuffling and domain swaps with voucher enzymes demonstrated that all PKS domains are highly productive. This contradiction led us to reveal novel programming layers exerted by the starter unit acyltransferase (SAT) and the thioesterase (TE) domains on the PKS system. First, macrocyclic vs linear product formation is dictated by the intrinsic biosynthetic program of the TE domain. Next, the chain length of the hrPKS product is strongly influenced in trans by the off-loading preferences of the nrPKS SAT domain. Last, TE domains are size-selective filters that facilitate or obstruct product formation from certain priming units. Thus, the intrinsic programs of the SAT and TE domains are both part of the extrinsic program of the hrPKS subunit and modulate the observable metaprogram of the whole PKS system. Reconstruction of SAT and TE phylogenies suggests that these domains travel different evolutionary trajectories, with the resulting divergence creating potential conflicts in the PKS metaprogram. Such conflicts often emerge in chimeric PKSs created by combinatorial biosynthesis, reducing biosynthetic efficiency or even incapacitating the system. Understanding the points of failure for such engineered biocatalysts is pivotal to advance the biosynthetic production of uNPs.


Asunto(s)
Ascomicetos/enzimología , Proteínas Fúngicas/química , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/química , Aciltransferasas/química , Secuencia de Aminoácidos , Vías Biosintéticas , Técnicas Químicas Combinatorias , Modelos Moleculares , Familia de Multigenes/genética , Fenilacetatos/química , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Tioléster Hidrolasas/química
16.
AMB Express ; 10(1): 118, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32613360

RESUMEN

Herbicides are important tools for weed control in modern agriculture. In the search for potential herbicidal natural products from fungal species, harzianum A and B were identified from the biofertilizer fungus, Trichoderma brevicompactum. In the phytotoxicity assays on the dicot species Brassica chinensis, harzianum A and B reduced both shoot and root lengths at low concentrations and inhibited the seed germination at 2 µg mL-1. In addition, harzianum A and B also exhibited phytotoxicity against monocots, Oryza sativa L. cv. Nipponbare and Echinochloa crusgalli L. Beauv.. Compared with a common herbicide, 2,4-dichlorophenoxyacetic acid, harzianum A and B performed similar activity in a pot assay, and were more effective in post-emergence than pre-emergence conditions. Harzianum A and B have potential as efficient herbicide for controlling important dicotyledon and monocotyledon weeds at low concentrations. They can be sprayed in liquid form in both pre- and post-emergence conditions. Our results confirmed the importance of these molecules for the development of new herbicides.

17.
J Nat Prod ; 83(7): 2246-2254, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32663025

RESUMEN

Seven new 4-acyl-2-aminoimidazoles, designated strepimidazoles A-G (1-7), were discovered from the endophytic Streptomyces sp. PKU-EA00015 isolated from Salvia miltiorrhiza Bunge, whose dry root "Danshen" is one of the most widely used traditional Chinese medicines. The resonance signals of the 2-aminoimidazole moiety in 1-7 were absent in the NMR spectra due to tautomerization, and the structures of 1-7 were identified after preparation of their acetylation products 1a-7a, respectively. Compounds 1-7 represent a new family of 2-aminoimidazole-containing natural products, enriching the structural diversity of natural products from endophytic origin. Compounds 1-7 showed different degrees of inhibitory activities against the plant pathogenic fungus Verticillium dahliae V991, revealing structure-activity relationships on the acyl moieties. The plant pathogenic fungus V. dahliae has been confirmed to cause serious chlorosis of cultivated S. miltiorrhiza Bunge in China. This study opens the door for further investigation of mutualistic relationships between S. miltiorrhiza Bunge and their endophytic actinomycetes and for possible antifungal agent development for biological control of V. dahliae in the future.


Asunto(s)
Ascomicetos/efectos de los fármacos , Imidazoles/farmacología , Plantas/microbiología , Streptomyces/química , Ascomicetos/patogenicidad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/química , Imidazoles/aislamiento & purificación , Medicina Tradicional China , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Análisis Espectral/métodos
18.
Nat Prod Rep ; 37(9): 1181-1206, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32211639

RESUMEN

Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.


Asunto(s)
Productos Biológicos/metabolismo , Hypocreales/metabolismo , Insectos/microbiología , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Hypocreales/química , Redes y Vías Metabólicas , Metaboloma , Policétidos/metabolismo , Metabolismo Secundario , Terpenos/metabolismo
19.
Nat Prod Rep ; 37(9): 1164-1180, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32211677

RESUMEN

Covering: 2014 up to the third quarter of 2019 Hypocrealean entomopathogenic fungi (HEF) produce a large variety of secondary metabolites (SMs) that are prominent virulence factors or mediate various interactions in the native niches of these organisms. Many of these SMs show insecticidal, immune system modulatory, antimicrobial, cytotoxic and other bioactivities of clinical or agricultural significance. Recent advances in whole genome sequencing technologies and bioinformatics have revealed many biosynthetic gene clusters (BGCs) potentially involved in SM production in HEF. Some of these BGCs are now well characterized, with the structures of the cognate product congeners elucidated, and the proposed biosynthetic functions of key enzymes validated. However, the vast majority of HEF BGCs are still not linked to SM products ("orphan" BGCs), including many clusters that are not expressed (silent) under routine laboratory conditions. Thus, investigations into the encoded parvome (the secondary metabolome predicted from the genome) of HEF allows the discovery of BGCs for known SMs; uncovers novel metabolites based on the BGCs; and catalogues the predicted SM biosynthetic potential of these fungi. Herein, we summarize new developments of the field, and survey the polyketide, nonribosomal peptide, terpenoid and hybrid SM BGCs encoded in the currently available 40 HEF genome sequences. Studying the encoded parvome of HEF will increase our understanding of the multifaceted roles that SMs play in biotic and abiotic interactions and will also reveal biologically active SMs that can be exploited for the discovery of human and veterinary drugs or crop protection agents.


Asunto(s)
Genómica , Hypocreales/metabolismo , Insectos/microbiología , Metaboloma/genética , Animales , Genoma Fúngico/genética , Genómica/métodos , Hypocreales/genética , Metabolismo Secundario/genética
20.
J Agric Food Chem ; 67(31): 8573-8580, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31293156

RESUMEN

Glycosylation endows both natural and synthetic small molecules with modulated physicochemical and biological properties. Plant and bacterial glycosyltransferases capable of decorating various privileged scaffolds have been extensively studied, but those from kingdom Fungi still remain underexploited. Here, we use a combination of genome mining and heterologous expression techniques to identify four novel glycosyltransferase-methyltransferase (GT-MT) functional modules from Hypocreales fungi. These GT-MT modules display decent substrate promiscuity and regiospecificity, methylglucosylating a panel of natural products such as flavonoids, stilbenoids, anthraquinones, and benzenediol lactones. Native GT-MT modules can be split up and regrouped into hybrid modules with similar or even improved efficacy as compared with native pairs. Methylglucosylation of kaempferol considerably improves its insecticidal activity against the larvae of oriental armyworm Mythimna separata (Walker). Our work provides a set of efficient biocatalysts for the combinatorial biosynthesis of small molecule glycosides that may have significant importance to the pharmaceutical, agricultural, and food industries.


Asunto(s)
Proteínas Fúngicas/química , Glicosiltransferasas/química , Hypocreales/enzimología , Metiltransferasas/química , Fenoles/química , Animales , Biocatálisis , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hypocreales/genética , Insecticidas/química , Insecticidas/farmacología , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Fenoles/farmacología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...